Theory of Planned Behavior as Predictor of Social Isolation by Sars-CoV-2
DOI:
https://doi.org/10.20435/pssa.v13i4.1369Keywords:
social isolation, Sars-CoV-2, coronavirus infections, attitudes, social behavior, theory of planned behaviorAbstract
The theory of planned behavior (TPB) has been shown to be an efficient predictor of health-related behaviors. This theory proposes that three psychological variables predict behavioral intention: attitude, subjective norms, perception of control. Behavioral intention, hence, explains the behavior itself. This study aimed to test the predictive power of TPB on social isolation from Sars-CoV-2. Participants were 1,139 adults, average age 35.5 years, from all regions of Brazil. The results showed adequate adjustment indexes of the predictive models of TPB on social isolation. TPB explained 30.7% of the variance of the degree of perceived isolation and 11.5% of the variance of the number of times they left home. Among the components of the TPB, the attitude proved to be the factor with the greatest predictive power over the variables of social isolation. This study can support prevention campaigns based on attitudes change.
References
Abraham, C., Clift, S., & Grabowski, P. (1999). Cognitive predictors of adherence to malaria prophylaxis regimens on return from a malarious region: A prospective study. Social Science & Medicine, 48(11), 1641-1654. doi:https://doi.org/10.1016/S0277-9536(98)00455-9
Agarwal, V. (2014). A/H1N1 vaccine intentions in college students: An application of the theory of planned behavior. Journal of American College Health, 62(6), 416-424. doi:https://doi.org/10.1080/07448481.2014.917650
Ajzen, I. (1988). Attitudes, personality, and behavior. Chicago: Dorsey Press.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:https://doi.org/10.1016/07495978(91)90020-t
Ajzen, I., & Cote, N.G. (2008). Attitudes and the prediction of behavior. In W. Crano, & P. Radmila (Eds.), Attitudes and attitude change (pp. 289-303). New York: Psychology Press.
Ajzen, I., & Fishbein, M. (2000). Attitudes and the attitude-behavior relation: Reasoned and automatic processes. European Review of Social Psychology, 11(1), 1-33. doi:https://doi.org/10.1080/14792779943000116
Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum.
Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), 931-934. doi:https://doi.org/10.1016/S0140-6736(20)30567-5
Banas, K., Lyimo, R. A., Hospers, H. J., Van der Ven, A., & De Bruin, M. (2017). Predicting adherence to combination antiretroviral therapy for HIV in Tanzania: A test of an extended theory of planned behaviour model. Psychology & Health, 32(10), 1249-1265. doi:https://doi.org/10.1080/08870446.2017.1283037
Bocchini, B. (2020). Coronavírus: Pesquisa mostra que 50% dos médicos acusam falta de EPI. Agência Brasil, 28 de Abril. Recuperado de https://agenciabrasil.ebc.com.br/geral/noticia/2020-04/coronavirus-pesquisa-mostra-que-50-dos-medicos-acusam-falta-de-epi
Bogg, T., & Milad, E. (2020). Slowing the Spread of COVID-19: Demographic, personality, and social cognition predictors of guideline adherence in a representative US sample. PsyArXiv, 3 de Abril. doi:https://doi.org/10.31234/osf.io/yc2gq
Brinol, P., & Petty, R. E. (2009). Source factors in persuasion: A self-validation approach. European Review of Social Psychology, 20(1), 49-96. doi:https://doi.org/10.1080/10463280802643640
Canabarro, A., Tenorio, E., Martins, R., Martins, L., Brito, S., & Chaves, R. (2020). Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies. medRxiv, 15 de abril. doi:https://doi.org/10.1101/2020.04.03.20052498
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19). In Statpearls [internet]. StatPearls Publishing.
Centers for Disease Control and Prevention (2020, Maio). Social Distancing: Keep Your Distance to Slow the Spread. Recuperado de https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
Gana, K., & Broc G. (2019). Structural equation modeling with lavaan. London: Iste & Wiley.
Hoefnagel, J. G., Massar, K., & Hautvast, J. L. (2019). Non-adherence to malaria prophylaxis: The influence of travel-related and psychosocial factors. Journal of Infection and Public Health, 13(4), 532-537. doi:https://doi.org/10.1016/j.jiph.2019.10.004
In Loco. (2020). Mapa Brasileiro da COVID-19. Recuperado de https://www.inloco.com.br/pt/covid-19
Liddelow, C., Mullan, B., & Novoradovskaya, E. (2020). Exploring medication adherence amongst Australian adults using an extended theory of planned behaviour. International Journal of Behavioral Medicine, Publicação eletrônica antecipada. doi:https://doi.org/10.1007/s12529-020-09862-z
Lurie, N., Saville, M., Hatchett, R., & Halton, J. (2020). Developing Covid-19 vaccines at pandemic speed. New England Journal of Medicine, 382(21), 1969-1973. doi:https://doi.org/10.1056/NEJMp2005630
McEachan, R. R. C., Conner, M., Taylor, N. J., & Lawton, R. J. (2011). Prospective prediction of health-related behaviours with the theory of planned behaviour: A meta-analysis. Health Psychology Review, 5(2), 97-144. doi:https://doi.org/10.1080/17437199.2010.521684
Milne, G. J., & Xie, S. (2020). The effectiveness of social distancing in mitigating COVID-19 spread: A modelling analysis. medRxiv, 23 de Março. doi:https://doi.org/10.1101/2020.03.20.20040055
Petty, R. E., Fazio, R. H., & Briñol, P. (2008). Attitudes: Insights from the new implicit measures. New York, NY: Psychology Press.
Petty, R. E., Briñol, P., & Priester, J. R. (2009). Mass media attitude change: Implications of the elaboration likelihood model of persuasion. In J. Bryant, & M. B. Oliver (Eds.), Media effects: Advances in theory and research (pp. 125-164). New York: Routledge.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of Statistical Software, 48(2), 1-36.
Rothan, H. A., & Byrareddy S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, on line. doi:https://doi.org/10.1016/j.jaut.2020.102433
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (Sixth Edition). Boston: Pearson.
Vecchione, M., Natali, E. M., & Fida, R. (2013). L’analise di variabili categoriali e non normali. In C. Barbaranelli, S. Ingoglia (Eds.), I Modelli di Equazioni Strutturali (pp. 265-294). Milano: LED.
West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 209-231). London: The Guilford Press.
World Health Organization [WHO]. (2020, Janeiro 12). Novel coronavirus: China. Recuperado de http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
Published
How to Cite
Issue
Section
License
The articles published on journal Psicologia e Saúde holds the copyrights of all texts published by it. Due to that, there is a demand for a letter of copyright cession (see Appreciation). The full reproduction of any article of this Journal in other publications, by any means, requires a written authorization of the Editorial Board. Partial reproductions of articles (abstracts, more than 500 words of text, tables, pictures and other illustrations, sound files) should have the written permission of the Editorial Board and the Authors.